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Abstract

This study addresses the synchronization of chaotic gyros with unknown parameters and external disturbance via

adaptive sliding mode control. To achieve synchronization, a switching surface is adopted such that it becomes easy to

ensure the stability of the error dynamics in the sliding mode. Then an adaptive sliding mode controller (ASMC) is derived

to guarantee the occurrence of the sliding motion even when the parameters of the drive and response gyros are fully

unknown. Numerical simulations are presented to verify that the synchronization can be achieved by using this ASMC.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In the last decade, control and synchronization of chaotic systems have become an important topic since the
pioneering work of Pecora and Carroll [1]. Chaos synchronization can be applied in the vast areas of physics
and engineering systems such as in chemical reactions, power converters, biological systems, information
processing, especially in secure communication [2–6]. Many different chaos synchronization strategies have
been developed, such as impulsive control [7,8], adaptive control [9,10], variable structure control [11–13],
optimal control [14], digital redesign control [15], backstepping control [16,17], and so on.

On the other hand, gyro dynamics is considered to be one of the most important problems and has been
studied by many authors. The gyro has attributes of great utility to navigational, aeronautical and space
engineering [18]. In the past years, the gyros have been found with rich phenomena and give benefit for
understanding of gyro systems. Different types of gyros with linear/nonlinear damping are investigated for
predicting the dynamic responses such as periodic and non-periodic (chaotic) motions [19–22]. Recently, based
on active control technique, Lei et al. [21] used two control inputs to achieve synchronization for chaotic
gyros. The controller was synthesized based on fully known parameters. In real-life applications, however, the
gyro’s parameters are inevitably perturbed by external inartificial factors and cannot be exactly known in
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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advance. Therefore, it is highly desirable to propose a new synchronization controller for chaotic gyros to
release the limitation of knowing the system parameters in advance.

The purpose of this paper lies in the development of an adaptive sliding mode control
(ASMC) for synchronizing the state trajectories of two chaotic gyros with unknown parameters and
external disturbance. A switching surface, which makes it easy to guarantee the stability of the error
dynamics in the sliding mode, is first proposed. And then, based on this switching surface, an ASMC is
derived to guarantee the occurrence of the sliding motion. In particular, the limitations of knowing system
parameters and external disturbance in priori are also released due to the adaptive scheme. Furthermore,
compared with the work of Lei et al. [21], this approach needs only a single controller to realize
synchronization, which has important significance in reducing the cost and complexity for controller
implementation. Finally, we present the numerical simulation results to illustrate the effectiveness of the
proposed ASMC scheme.

This paper is organized as follows: Section 2 describes the dynamics of a nonlinear gyro. In Section 3, the
synchronization problem for chaotic gyros is formulated and the stable switching surface is first derived. Then
a novel ASMC is designed to guarantee the occurrence of the sliding mode. Numerical simulations that
confirm the validity and feasibility of the proposed method are shown in Section 4. Finally, conclusions are
presented in Section 5.

Throughout this paper, it is noted that, |w| represents the absolute value of w and JwJ represents the
Euclidean norm when w is a vector. sign(s) is the sign function of s, if s40, sign(s) ¼ 1; if s ¼ 0, sign(s) ¼ 0; if
so0, sign(s) ¼ �1.
2. Dynamics of a symmetric gyro with nonlinear damping

In this paper, a symmetric gyro with linear-plus-cubic damping, see Fig. 1 in Ref. [18], is considered. The
equation governing the motion of this symmetric gyro in terms of the angle y is given by [18]

€yþ a2
ð1� cos yÞ2

sin3 y
þ c1 _yþ c2 _y

3
� b sin y ¼ f sin wt sin y, (1)

where f sinwt is a parametric excitation, c1 _y and c2 _y
3
are linear and nonlinear damping terms, respectively,

and a2½ð1� cos yÞ2=sin3 y� � b sin y is a nonlinear resilience terms. The normalized equations in convenient
Fig. 1. The phase plane of x1 versus x2.
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first-order form are

_x1 ¼ x2,

_x2 ¼ �a2
ð1� cos x1Þ

2

sin3 x1

� c1x2 � c2x
3
2 þ b sin x1 þ f sin wt sin x1, ð2Þ

where x1 ¼ y, x2 ¼
_y.

The dynamics of this system has been extensively studied in [18,19] for a space range of the amplitude of the
term f. In particular, for the parameter value of a2 ¼ 100, b ¼ 1, c1 ¼ 0:5, c2 ¼ 0.05, w ¼ 2 and f ¼ 35.5, this
symmetric gyro displays chaotic behavior [18]. Fig. 1 shows the chaotic attractor with initial condition of
[x1(0), x2(0)] ¼ [�1, 2]. In the following, we will consider the synchronization of two identical gyros and give
an explicit and simple procedure to establish an ASMC to guarantee the synchronization even when the
system’s parameters are fully unknown.

3. Synchronization problem formulation and ASMC design

Let us consider the following two nonlinear gyros, where the drive system and response system are denoted
with x and y, respectively. The systems are

_x1 ¼ x2,

_x2 ¼ �a2
ð1� cos x1Þ

2

sin3 x1

� c1x2 � c2x
3
2 þ b sin x1 þ f sin wt sin x1 ð3Þ

and

_y1 ¼ y2,

_y2 ¼ �a
2 ð1� cos y1Þ

2

sin3 y1

� c1y2 � c2y
3
2 þ b sin y1 þ f sin wt sin y1 þ rðtÞ þ uðtÞ. ð4Þ

To generally describe the gyros in the true physical world, the response gyro (4) is assumed to be subject to
external disturbance r(t)AR. Without loss of generality, the external disturbance is bounded, i.e.
|r(t)|pdAR+. We have introduced the single control input u into the second equation in the system (4).
This single input is to be determined for the purpose of synchronizing the two nonlinear gyros with the same
but unknown parameters a, b, c1, c2, w, f and the unknown disturbance bound d. Let us define the
synchronization errors between the response system (4) and the drive system (3) as follows:

e1 ¼ y1 � x1; e2 ¼ y2 � x2, (5)

then the dynamics of the error system is determined, directly subtracting (3) from (4), as follows:

_e1 ¼ e2,

_e2 ¼ � c1e2 þ a2gðx1; y1Þ � c2y
3
2 þ c2x

3
2 þ ðbþ f sin wtÞðsin y1 � sin x1Þ þ rðtÞ þ u, ð6Þ

where

gðx1; y1Þ ¼
ð1� cos x1Þ

2

sin3 x1

�
ð1� cos y1Þ

2

sin3 y1

.

It is clear that the synchronization problem is replaced by the equivalent of stabilizing the error dynamics (6)
using a suitable choice of the control scheme u. Therefore, the considered goal of this paper is that for any
given nonlinear gyros as (3) and (4), an ASMC is designed such that the asymptotical stability of the resulting
error system (6) can be achieved in the sense that Je(t)J-0 as t-N, where e(t) ¼ [e1, e2].

As a sequence, to achieve the synchronization via ADMC, two basic steps are involved: (1) selecting an
appropriate switching surface such that the sliding motion on the sliding mode is stable and ensures
limt!1 eðtÞ

�� �� ¼ 0; and (2) establishing an ASMC law which guarantees the existence of the sliding mode
s(t) ¼ 0 even with fully unknown system’s parameters.
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To ensure the asymptotical stability of the sliding mode, a switching surface s(t) in the error space is defined
as follows:

sðtÞ ¼ e2ðtÞ þ le1ðtÞ, (7)

where s(t)AR and l is design parameter which can be easily determined later. As well known, when the system
operates in the sliding mode, it satisfies the following equations [23,24]

sðtÞ ¼ e2ðtÞ þ ke1ðtÞ ¼ 0. (8)

Therefore, the following sliding mode dynamics can be obtained as

_e1ðtÞ ¼ e2ðtÞ ¼ �le1ðtÞ, (9)

_e2 ¼ �c1e2 þ a2gðx1; y1Þ � c2y3
2 þ c2x

3
2 þ ðbþ f sin wtÞðsin y1 � sin x1Þ þ rðtÞ þ u. (10)

Obviously, if the design parameter l40 is specified, the stability of (9) is surely guaranteed, that is
limt!1e1ðtÞ ¼ 0. Furthermore, by Eq. (8), e2(t)is also stable, that is limt!1e2ðtÞ ¼ 0. Meanwhile, it is worthy
of note that the value l is also relative to the speed of error system response in the sliding mode.

Having established an appropriate switching surface, the next step is to design an ASMC scheme to drive
the error system trajectories onto the switching surface s(t) ¼ 0. To ensure the occurrence of the sliding mode,
an ASMC scheme is proposed as

uðtÞ ¼ �le2 � gx signðsÞ, (11)

where g41, x ¼ ĉ1je2j þ âjgðx1; y1Þj þ ĉ2jy
3
2 � x3

2j þ Ẑj sin y1 � sin x1j þ d̂. The adaptive laws are

_̂c1 ¼ je2jjsj; ĉ1ð0Þ ¼ ĉ10,

_̂c2 ¼ jy
3
2 � x3

2jjsj; ĉ2ð0Þ ¼ ĉ20,

_̂a ¼ jgðx1; y1Þjjsj; âð0Þ ¼ â0,
_̂Z ¼ j sin y1 � sin x1jjsj; Ẑð0Þ ¼ Ẑ0,
_̂d ¼ jsj; d̂ð0Þ ¼ d̂0, ð12Þ

where ĉ10, ĉ20, â0, Ẑ0 and d̂0 are the positive and bounded initial values of ĉ1, ĉ2, â, Ẑ and d̂, respectively.
The proposed adaptive control scheme above will guarantee the globally asymptotical stability for the error

system (6), and is proven in the following theorem.

Theorem 1. Consider the error dynamics (6), if this system is controlled by u(t) in (11) with adaptation law (12).
Then the system trajectory converges to the sliding surface sðtÞ ¼ 0.

Before proving Theorem 1, the Barbalat’s lemma is given below.

Lemma 1. (Barbalat’s lemma [25]). If w : R! R is a uniformly continuous function for tX0 and if

limt!1

R t

0 jwðlÞjdl exists and is finite, then limt!1wðtÞ ¼ 0.

After introducing Lemma 1, we are ready to prove Theorem 1.

Proof of Theorem 1. Let

y1 ¼ ĉ1 � c1j j; y2 ¼ ĉ2 � c2j j; y3 ¼ â� a2; y4 ¼ Ẑ� Z and y5 ¼ d̂� d, (13)

where Z ¼ jbj þ jf j. It is assumed that |c1|, |c2|, a
2, Z and d are unknown constants. Thus the following

expression holds.

_y1 ¼ _̂c1; _y2 ¼ _̂c2; _y3 ¼ _̂a; _y4 ¼ _̂Z and _y5 ¼
_̂d. (14)

Consider the following Lyapunov function candidate

V ðtÞ ¼
1

2
s2 þ

X5
i¼1

y2i

 !
. (15)
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It is clear that V is a positive definite function, then taking the derivative of V(t) with respect to time t, one has

_V ðtÞ ¼ s_sþ
X5
i¼1

yi
_yi. (16)

Introducing (6), (7), (11) and (12) into (16) yields

_V ðtÞ ¼ s _e2 þ l_e1½ � þ
X5
i¼1

yi
_yi

¼ sð_e2 þ le2Þ þ
X5
i¼1

yi
_yi

¼ sð�c1e2 þ a2gðx1; y1Þ � c2ðy
3
2 � x3

2Þ þ ðbþ f sin wtÞðsin y1 � sin x1Þ

þ rðtÞÞ � gxs signðsÞ þ
X5
i¼1

yi
_yi

pjc1jje2jjsj þ a2jgðx1; y1Þjjsj þ jc2jjy
3
2 � x3

2jjsj þ ðjbj þ jf jÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{Z

j sin y1

� sin x1jjsj þ djsj � gxjsj þ
X5
i¼1

yi
_yi

¼ ðjc1j � ĉ1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�y1

je2jjsj þ ða2 � âÞ|fflfflfflffl{zfflfflfflffl}
�y2

jgðx1; y1Þjjsj þ ðjc2j � ĉ2Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�y3

jy3
2 � x3

2jjsj

þ ðZ� ẐÞ|fflfflffl{zfflfflffl}
�y4

j sin y1 � sin x1jjsj þ ðd� d̂Þ|fflfflffl{zfflfflffl}
�y5

jsj þ xjsj � gxjsj þ
X5
i¼1

yi
_yi

¼ ð1� gÞxjsj ð17Þ

Since g41 has been specified in (11), we obtain the following inequality

_V ðtÞp� ðg� 1Þxjsj. (18)

Now if we define jwðtÞj ¼ ðg� 1Þxjsj40, and integrating the above equation from zero to t, it yields

V ðtÞpV ð0Þ �

Z t

0

jwðtÞjdt) V ð0ÞXV ðtÞ þ

Z t

0

jwðtÞjdtX
Z t

0

jwðtÞjdt. (19)

Taking the limit as t!1 on both side of (19) gives

14V ð0ÞX lim
t!1

Z t

0

jwðtÞjdt. (20)

Thus according to Barbalat’s lemma (see Lemma 1), we obtain

lim
t!1
jwðtÞj ¼ lim

t!1
ðg� 1Þxjsj ! 0. (21)

Since ðg� 1Þ40 and x40 for all t40, (21) implies sðtÞ ! 0 as t!1. Hence the proof is achieved
completely. &

The following theorem is introduced to guarantee the asymptotical stability of the closed-loop error system (6).

Theorem 2. The closed-loop error system (6) driven by the controller u(t) (11) with adaptation law (12) is

asymptotically stable in the large.

Proof. When the error system (6) is driven by the control input u(t) given in (11) with adaptation law (12),
the trajectory of the error dynamics system converges to the sliding mode s ¼ 0, as previously discussed in
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Theorem 1. Thus the equivalent error dynamics system in the sliding mode is obtained as shown in (9). As
discussed previously, in (7), the values of l40 is specified to guarantee the asymptotical stability of the error
dynamic system. Consequently, the asymptotical stability of the closed-loop error system is also ensured. The
theorem is therefore proved. &

Remark 1. The controller in (11) demonstrates a discontinuous control law and the phenomenon of chattering
will appear. In order to eliminate the chattering, the controller (11) can be modified as

uðtÞ ¼ �le2 � gx
s

jsj þ �
, (22)

where e is a sufficiently small positive constant. From the works [26,27], the solution of system (6) with (11)
can be made arbitrarily close to the solution (6) with (22), if one chooses e sufficiently small.
4. Numerical example

In this section, simulation results are presented to demonstrate the effectiveness of the proposed adaptive
synchronization algorithm. All the simulation procedures are coded and executed using the software of
MATLAB. The system parameters are chosen as follows: a2 ¼ 100, b ¼ 1, c1 ¼ 0:5, c2 ¼ 0:05, w ¼ 2, f ¼ 35:5
and the external disturbance in response system (4) is defined as rðtÞ ¼ 0:2 cos 2t. Thus jrðtÞjp0:2 ¼ d can be
obtained. The initial states of the drive system (3) are x1ð0Þ ¼ 0:5, x2ð0Þ ¼ 1 and initial states of the response
system (4) are y1ð0Þ ¼ 1, y2ð0Þ ¼ 2.

As mentioned in Section 3, the proposed design procedure may be obtained as follows:
Step 1: According to (7), we select l ¼ 140 to result in a stable sliding mode. Therefore the switching

surface equation is

sðtÞ ¼ e2 þ e1. (23)

Step 2: From (22), the continuous control input is determined as

uðtÞ ¼ �e2 � g ĉ1je2j þ âjgðx1; y1Þj þ ĉ2jy
3
2 � x3

2j þ Ẑj sin y1 � sin x1j þ d̂
� � s

jsj þ 0:01
(24)
Fig. 2. Time response of s(t).
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with g ¼ 1:141 and the adaptive laws are

_̂c1 ¼ je2jjsj; ĉ1ð0Þ ¼ 0:9,

_̂c2 ¼ jy
3
2 � x3

2jjsj; ĉ2ð0Þ ¼ 0:7,

_̂a ¼ jgðx1; y1Þjjsj; âð0Þ ¼ 0:5,

_̂Z ¼ j sin y1 � sin x1jjsj; Ẑð0Þ ¼ 0:3,

_̂d ¼ jsj; d̂ð0Þ ¼ 0:1. ð25Þ
Fig. 3. State responses for the controlled drive-response gyros.

Fig. 4. Time responses of adaptation parameters.
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The simulation results are shown in Figs. 2–5 under the proposed ASMC (24) with the adaptation algorithm
(25). Figs. 2 and 3 show, respectively, the corresponding s(t) and state responses for the controlled drive-
response gyros. The time responses of adaptation parameters and control input are shown in Figs. 4 and 5,
respectively. From the simulation results, it is shown that the trajectory of error dynamics converges to s ¼ 0
and the synchronization error also converges to zero. Thus the proposed ASMC works well and two chaotic
nonlinear gyros from different initial values are indeed achieving chaos synchronization even when the
system’s parameters and external disturbance are fully unknown. Also the chattering does not appear due to
the continuous control.

5. Conclusions

In this paper, adaptive synchronization control for chaotic symmetric gyros with linear-plus-cubic damping
is demonstrated. A newly developed adaptive sliding mode controller has been proposed to cope with the fully
unknown system parameters and external disturbance. Numerical simulations have verified the effectiveness of
the proposed method.
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